

LA-UR-19-29722

Approved for public release; distribution is unlimited.

Title: FULLY LOCAL QUASIDIFFUSION

Author(s): Olivier, Samuel

Warsa, James S.

Intended for: Report

Issued: 2019-09-26

Fully Local Quasidiffusion

End of Summer Presentation

Samuel Olivier, James Warsa August 13, 2019

Background

Thermal Radiative Transfer

- Describes conservation and transfer of energy between photons and matter
- ullet 6+1 dimensional phase space \Rightarrow dominates memory and runtime
- Capsaicin: algorithmic improvements are all that's left
- Goal: first steps toward a QD TRT algorithm with cell-local coupling to the material energy balance equation

Quasidiffusion/Variable Eddington Factor Method

- An old method with two names and three disambiguations
 - Reactor transport: Quasi-diffusion
 - Astrophysicists: VEF has been in our code for decades...
 - TRT transport:
 - Robust, non-linear acceleration scheme
 - Two-level in angle
 - Nonlinear projective iteration not additive correction
- Consistent Discretization
 - Discretized QD matches discretized transport exactly
- Inconsistent Discretization
 - Differ by discretization error
 - Acceleration properties the same given QD terms are properly represented
- QD algorithms can take advantage of this flexibility

The Bleeding Edge of QD

- Anistratov and Warsa (NSE, 2018)
 - Consistent linear-linear DG discretization
 - Compared many types of cell interface conditions
- Warsa and Anistratov (JCTT, 2018)
 - Inconsistent discretization can affect acceleration properties
 - NKA recovers iterative efficiency
- Anistratov, Warsa, and Lowrie (M&C 2019)
 - Investigated processor-local QD with processor boundary conditions to accelerate PBJ

All were 1D only

Proposed Algorithm

- Combine them all and implement in Capsaicin on 2D triangles
- Extend processor-local QD to Fully Local
 - Solve each cell independently
 - Compute interior boundary conditions from angular flux that decouple the cells
- Use NKA to retain iterative efficiency
- TRT algorithm: nonlinearly iterate FLQD with material energy balance equation "at the bottom"
 - Use FLQD as an inexpensive proxy for transport
 - ullet Fully Local \Rightarrow Newton iterations don't require a global solve
 - Cell-wise coupling better than point-wise

Show scheme is reasonably effective for Linear Transport before TRT

Moment Equations

• Steady-state, mono-energetic, isotropic scattering and source

$$\hat{\Omega} \cdot \nabla \psi + \sigma_t \psi = \frac{\sigma_s}{4\pi} \int \psi \, d\Omega' + \frac{Q}{4\pi}$$

Angular moments always have more unknowns than equations

$$\nabla \cdot \vec{J} + \sigma_a \phi = Q \,,$$

$$\nabla \cdot \mathbf{P} + \sigma_t \vec{J} = 0$$

with

$$\phi = \int \psi \, \mathrm{d}\Omega \,, \quad \vec{J} = \int \hat{\Omega} \, \psi \, \mathrm{d}\Omega \,, \quad \mathbf{P} = \int \hat{\Omega} \otimes \hat{\Omega} \, \psi \, \mathrm{d}\Omega$$

• $3D \Rightarrow 6 + 3 + 1 = 10$ unknowns with only 4 equations

The Philosophy of QD

When in doubt, multiply and divide by the scalar flux

$$\mathbf{P} = \int \hat{\Omega} \otimes \hat{\Omega} \, \psi \, \mathrm{d}\Omega \to \underbrace{\frac{\int \hat{\Omega} \otimes \hat{\Omega} \, \psi \, \mathrm{d}\Omega}{\int \psi \, \mathrm{d}\Omega}}_{\mathbf{E}} \phi = \mathbf{E} \phi$$

QD equations:

$$\nabla \cdot \vec{J} + \sigma_a \phi = Q$$
$$\nabla \cdot (\mathbf{E}\phi) + \sigma_t \vec{J} = 0$$

- ψ linearly anisotropic \Rightarrow $\mathbf{E} = \frac{1}{3}\mathbf{I}$, Fick's Law
- Tensor diffusion in first-order form

$$\nabla \cdot \vec{J} + \sigma_a \phi = Q$$
$$\mathbf{D} \cdot \nabla \phi + \vec{J} = 0$$

 QD second-order form has all mixed derivatives in addition to Laplacian terms ⇒ difficult to discretize

Linear Transport QD Algorithm

Solve

$$\hat{\Omega}\cdot\nabla\psi^{\ell+1/2}+\sigma_t\psi^{\ell+1/2}=\frac{\sigma_s}{4\pi}\phi^\ell+\frac{Q}{4\pi}$$
 for $\psi^{\ell+1/2}$

Compute Eddington tensor:

$$\mathbf{E}^{\ell+1/2} = \frac{\sum w_d \, \hat{\Omega}_d \otimes \hat{\Omega}_d \, \psi_d^{\ell+1/2}}{\sum w_d \psi_d^{\ell+1/2}}$$

• Solve QD equations for updated scalar flux $\phi^{\ell+1}$

$$\nabla \cdot \vec{J}^{\ell+1} + \sigma_a \phi^{\ell+1} = Q ,$$

$$\nabla \cdot \left(\mathbf{E}^{\ell+1/2} \phi^{\ell+1} \right) + \sigma_t \vec{J}^{\ell+1} = 0 .$$

- Update scattering term with QD solution
- Stop when $\|\phi^{\ell+1} \phi^{\ell}\| < tol$

7/32

- Overlap

- DG

Linear Transport QD Algorithm

Solve

$$\hat{\Omega}\cdot\nabla\psi^{\ell+1/2}+\sigma_t\psi^{\ell+1/2}=\frac{\sigma_s}{4\pi}\phi^\ell+\frac{Q}{4\pi}$$
 for $\psi^{\ell+1/2}$

• Compute Eddington tensor:

$$\mathbf{E}^{\ell+1/2} = \frac{\sum w_d \,\hat{\Omega}_d \otimes \hat{\Omega}_d \,\psi_d^{\ell+1/2}}{\sum w_d \psi_d^{\ell+1/2}}$$

 \bullet Solve QD equations for updated scalar flux $\phi^{\ell+1}$

$$\nabla \cdot \vec{J}^{\ell+1} + \sigma_a \phi^{\ell+1} = Q ,$$

$$\nabla \cdot \left(\mathbf{E}^{\ell+1/2} \phi^{\ell+1} \right) + \sigma_t \vec{J}^{\ell+1} = 0 .$$

- Update scattering term with QD solution
- Stop when $\|\phi^{\ell+1} \phi^{\ell}\| < tol$

Properties

- Acceleration occurs because Eddington factors converge quickly
 - Depends on angular shape not magnitude
 - ullet ψ converges quickly in angular shape
 - Compensates lagging of scattering term in Source Iteration

Discretization

Zeroth Moment

$$\nabla \cdot \vec{J} + \sigma_a \phi = Q$$

- Anistratov and Warsa consistent discretization has both ϕ and \vec{J} approximated with linear DG
- ullet Multiply by test function u and integrate over single element

$$\int u \, \nabla \cdot \vec{J} \, dV + \int \sigma_a \, u \phi \, dV = \int u \, Q \, dV$$

 \bullet Integrate by parts since \vec{J} is discontinuously approximated

$$\oint u \,\widehat{J}_n \, dA - \int \nabla u \cdot \vec{J} \, dV + \int \sigma_a \, u\phi \, dV = \int u \, Q \, dV$$

where \widehat{J}_n is an upwind-consistent net current

FEM Interpolation

• Shape functions on reference triangle

 η

(0,0)

$$B_1(\xi, \eta) = 1 - \xi - \eta$$
, $B_2(\xi, \eta) = \xi$, $B_3(\xi, \eta) = \eta$

• Interpolate scalar flux with linear combination of shape functions

$$\phi(\xi,\eta) = \sum_{j} B_{j}(\xi,\eta)\phi_{j}$$

• Re-write as dot product of vectors of shape functions and coefficients

$$\phi(\xi, \eta) = \begin{bmatrix} B_1(\xi, \eta) & B_2(\xi, \eta) & B_3(\xi, \eta) \end{bmatrix} \begin{bmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{bmatrix}$$
$$= \mathbf{B}\underline{\phi}$$

FEM Interpolation (cont.)

 Interpolate each component of the current with linear shape functions

$$J_d(\xi, \eta) = \sum_j B_j(\xi, \eta) J_{d,j}, \quad d = x, y$$

• Re-write as matrix-vector product

$$\vec{J}(\xi,\eta) = \begin{bmatrix} B_1 & B_2 & B_3 \\ & & B_1 & B_2 & B_3 \end{bmatrix} \begin{bmatrix} J_{x1} \\ J_{x2} \\ J_{x3} \\ J_{y1} \\ J_{y2} \\ J_{y3} \end{bmatrix}$$
$$= \mathbf{N}J$$

Discrete Zeroth Moment

$$-\mathbf{D}\underline{J} + \mathbf{M}_a\underline{\phi} = \mathbf{M}\underline{Q} - \underline{J}_b$$

with

$$\mathbf{D} = \int (\nabla \mathbf{B})^T \mathbf{N} \, dV, \quad \mathbf{M}_a = \int \sigma_a \mathbf{B}^T \mathbf{B} \, dV,$$
$$\mathbf{M} = \int \mathbf{B}^T \mathbf{B} \, dV$$

Use isoparametric transformation to transform derivatives and convert from reference to physical space

First Moment

$$\nabla \cdot (\mathbf{E}\phi) + \sigma_t \vec{J} = 0$$

ullet Multiply by vector-valued test function $ec{v}$ and integrate over element

$$\int \vec{v} \cdot \nabla \cdot (\mathbf{E}\phi) \, dV + \int \sigma_t \, \vec{v} \cdot \vec{J} \, dV = 0$$

ullet Integrate by parts since both ϕ and ${f E}$ are discontinuous

$$\oint \vec{v} \cdot \mathbf{E} \cdot \hat{n} \, \widehat{\phi} \, dV - \int \nabla \vec{v} : \mathbf{E} \, \phi \, dV + \int \sigma_t \, \vec{v} \cdot \vec{J} \, dV = 0$$

where

$$\nabla \vec{v} = \begin{bmatrix} \frac{\partial v_x}{\partial x} & \frac{\partial v_x}{\partial y} \\ \frac{\partial v_y}{\partial x} & \frac{\partial v_y}{\partial y} \end{bmatrix},$$

$$\mathbf{A} : \mathbf{B} = \sum_{i} \sum_{j} A_{ij} B_{ij} = A_{11} B_{11} + A_{12} B_{12} + A_{21} B_{21} + A_{22} B_{22}$$

and $\widehat{\phi}$ is an upwind-consistent scalar flux

Discrete First Moment

$$-\int \nabla \vec{v} : \mathbf{E} \phi \, dV + \int \sigma_t \vec{v} \cdot \vec{J} \, dV = -\oint \vec{v} \cdot \mathbf{E} \cdot \hat{n} \, \widehat{\phi} \, dA$$

$$-\mathbf{G}\underline{\phi} + \mathbf{M}_t \underline{J} = -\underline{\phi}_b$$

with

$$\mathbf{G} = \int (\nabla \mathbf{N})^T \mathbf{E} \mathbf{B} \, dV, \quad \mathbf{M}_t = \int \sigma_t \mathbf{N}^T \mathbf{N} \, dV$$

Boundary Terms

Upwind Consistency

- Want consistency with DG transport
- \bullet Face between elements e and e' with normal from $e \to e',$ the upwind angular flux is

$$\hat{\Omega} \cdot \hat{n} \, \hat{\psi} = \frac{1}{2} \Big(|\hat{\Omega} \cdot \hat{n}| + \hat{\Omega} \cdot \hat{n} \Big) \, \psi_e + \frac{1}{2} \Big(|\hat{\Omega} \cdot \hat{n}| - \hat{\Omega} \cdot \hat{n} \Big) \, \psi_{e'}$$

• Discrete current

$$\begin{split} \int \hat{\Omega} \cdot \hat{n} \, \hat{\psi} \, \mathrm{d}\Omega &= \underbrace{\int_{\hat{\Omega} \cdot \hat{n} > 0} \hat{\Omega} \cdot \hat{n} \, \psi_e \, \mathrm{d}\Omega}_{\text{local outflow}} + \underbrace{\int_{\hat{\Omega} \cdot \hat{n} < 0} \hat{\Omega} \cdot \hat{n} \, \psi_{e'} \, \mathrm{d}\Omega}_{\text{neighbor's inflow}} \\ &= J_{n.e.}^+ + J_{n.e.}^- \end{split}$$

Consistent boundary current:

$$\hat{J}_n = J_{n,e}^+ + J_{n,e'}^-$$

• Boundary scalar flux from half-range scalar fluxes

$$\widehat{\phi} = \phi_{n,e}^+ + \phi_{n,e'}^-$$

Fully Local Discretization

- All terms are cell-local except boundary terms
- Boundary terms have a
 - Local outflow contribution $(J_{n,e}^+$ and $\phi_{n,e}^+)$
 - \bullet Non-local inflow contribution $(J_{n,e'}^-$ and $\phi_{n,e'}^-)$
- Decouple cells
 - Outflow from local information + QD BCs
 - Inflow from neighbor's high-order solution from previous sweep
- Solve QD equations on each cell independently

Miften-Larsen QD Outflow Condition

Miften-Larsen QD boundary conditions:

$$\begin{split} \vec{J} \cdot \hat{n} &= J_n^+ + J_n^- \\ &= 2J_n^+ - (J_n^+ - J_n^-) \\ &= 2J_n^+ - \int |\hat{\Omega} \cdot \hat{n}| \, \psi \, \mathrm{d}\Omega \\ &= 2J_n^+ - \frac{\int |\hat{\Omega} \cdot \hat{n}| \, \psi \, \mathrm{d}\Omega}{\int \psi \, \mathrm{d}\Omega} \phi \\ &= 2J_n^+ - G\phi \\ & \therefore J_n^+ = \frac{1}{2} \Big[\vec{J} \cdot \hat{n} + G\phi \Big] \end{split}$$

- Provides expression for transport-consistent outflow partial current
- ψ linearly anisotropic $\Rightarrow G = \frac{1}{2}$, recover Marshak boundary conditions

High-Order Inflow Condition

ullet Compute inflow from ψ at previous iteration

$$J_n^- = \int_{\hat{\Omega} \cdot \hat{n} < 0} \hat{\Omega} \cdot \hat{n} \, \psi \, d\Omega$$

Combining QD outflow and high-order inflow

$$\widehat{J}_n = \frac{1}{2} \left(\vec{J} \cdot \hat{n} + G\phi \right) + J_n^-$$

Discrete boundary terms

$$\oint u \,\widehat{J}_n \, dA \to \frac{1}{2} \oint \mathbf{B}^T \hat{n}^T \mathbf{N} \underline{J} \, dA + \frac{1}{2} \oint G \mathbf{B}^T \mathbf{B} \underline{\phi} \, dA + \oint \mathbf{B}^T J_n^- \, dA$$

 Adds a bilinear form for the current and scalar flux and a RHS source term computed from transport

Scalar Flux QD Boundary

ullet Use high-order information to get a boundary form for ϕ_n^\pm

$$\phi_n^+ = \frac{1}{C_n^+} J_n^+ , \quad C_n^+ = \frac{\int_{\hat{\Omega} \cdot \hat{n} > 0} \hat{\Omega} \cdot \hat{n} \, \psi \, d\Omega}{\int_{\hat{\Omega} \cdot \hat{n} > 0} \psi \, d\Omega}$$

Combine with Miften-Larsen

$$\begin{split} \widehat{\phi} &= \phi_{n,e}^{+} + \phi_{n,e'}^{-} \\ &= \frac{1}{C_{n}^{+}} J_{n}^{+} + \phi_{n,e'}^{-} \\ &= \frac{1}{2C_{n}^{+}} \Big[\vec{J} \cdot \hat{n} + G \phi \Big] + \phi_{n}^{-} \end{split}$$

• Discrete first moment boundary term:

$$\oint \vec{v} \cdot \mathbf{E} \cdot \hat{n} \, \widehat{\phi} \, dA \to \oint \mathbf{N}^T \mathbf{E} \hat{n} \, \frac{1}{2C_n^+} \hat{n}^T \mathbf{N} \underline{J} \, dA + \oint \mathbf{N}^T \mathbf{E} \hat{n} \, \frac{G}{2C_n^+} \mathbf{B} \underline{\phi} \, dA + \int \mathbf{N}^T \mathbf{E} \hat{n} \, \phi_n^- \, dA$$

Putting it All Together

• For each element solve:

$$\begin{bmatrix} \mathbf{M}_a & -\mathbf{D} \\ -\mathbf{G} & \mathbf{M}_t \end{bmatrix} \begin{bmatrix} \underline{\phi} \\ \underline{\underline{J}} \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

with boundary terms included in the definitions of the left and right hand sides

- 9×9 system \Rightarrow can directly invert
- Implemented with Trilinos' Epetra_SerialDenseSolver

Boundary Integration

Analytic Integration

- In Capsaicin, most FEM integrals are pre-evaluated by hand
- \bullet Problem: all QD terms inherit the spatial variance of $\psi(\vec{x}) = \mathbf{B}\underline{\psi}$

$$\mathbf{E}(\vec{x}) = \frac{\int \hat{\Omega} \otimes \hat{\Omega} \, \psi(\vec{x}) \, \mathrm{d}\Omega}{\int \psi(\vec{x}) \, \mathrm{d}\Omega} = \frac{\int \hat{\Omega} \otimes \hat{\Omega} \, \mathbf{B} \underline{\psi} \, \mathrm{d}\Omega}{\int \mathbf{B} \underline{\psi} \, \mathrm{d}\Omega}$$

- \Rightarrow E, G, and C_n^+ are all improper rational polynomials in space
- Integral of improper rational polynomial involves logarithms of the denominator
 - $\ln \phi$ not defined for $\phi < 0 \Rightarrow$ loss of robustness to negativity
- First moment boundary terms are exceptionally complicated

$$\oint \mathbf{N}^T \mathbf{E} \hat{n} \frac{G}{2C_n^+} \mathbf{B} \, \mathrm{d}A = \oint \frac{\mathrm{quintic polynomial}}{\mathrm{cubic polynomial}} \, \mathrm{d}A$$

characterized by 18 coefficients (numerator and denominator of the QD terms at the two nodes on the face)

Method One: Closing "After the Fact"

• Apply an angular and spatial closure after discretizing in space

$$\oint \vec{v} \cdot \mathbf{E} \cdot \hat{n} \, \widehat{\phi} \, \mathrm{d}A \to \frac{\oint \vec{v} \cdot \mathbf{P} \cdot \hat{n}}{\oint \widehat{\phi} \, \mathrm{d}A} \oint \widehat{\phi} \, \mathrm{d}A$$

- After the fact closure avoids integrating rational polynomials
- Derive Miften-Larsen BCs in spatially discrete context, can get all terms as ratio of integrals instead of integral of ratios
- Motivation: in 1D the only integral is the gradient term (no boundary integrals)

$$\int \frac{\mathrm{d}B_i}{\mathrm{d}x} EB_j \,\mathrm{d}x \to \frac{\int \frac{\mathrm{d}B_i}{\mathrm{d}x} \int \mu^2 \,\psi \,\mathrm{d}\mu \,\mathrm{d}x}{\int \int \psi \,\mathrm{d}\mu \,\mathrm{d}x} \int B_j \,\mathrm{d}x$$

linear elements $\Rightarrow \frac{\mathrm{d}B_i}{\mathrm{d}x} =$ constant, after the fact closure is equivalent to using spatially averaged Eddington factor

Method Two: Numerical Quadrature

- Suboptimal convergence for discrete closure
- Analytic integrals are complicated, error prone, and have restrictions
- Implemented Gauss quadrature for the face integral terms involving QD factors
- After the fact may have worked in 1D because spatial averaging equivalent to one-point quadrature
 - Not possible to recast 2D boundary terms with discrete closure as low-order quadrature
- 2 point GQ is accurate enough
 - QD factors slowly vary in space for simple isotropic solutions

Results

Convergence Test

- MMS is somewhat difficult in Capsaicin
- Instead, use difference between transport solution and QD solution + triangle inequality

$$\|\phi_{S_{n}} - \phi_{QD}\| = \|(\phi_{S_{n}} - \phi) + (\phi - \phi_{QD})\|$$

$$\leq \|\phi_{S_{n}} - \phi\| + \|\phi - \phi_{QD}\|$$

$$= C_{S_{n}}h^{2} + C_{QD}h^{p}$$

$$\approx \mathcal{O}\left(h^{\min(2,p)}\right)$$

- Use convergence of S_n and QD as proxy for error
- Test can verify convergence up to second order
- All results used triangular Gauss-Chebyshev-Legendre S_8 and an iterative tolerance of 10^{-10}

Spatial Convergence Rates

Fully Local QD second order for GQ only

Scattering Ratio Test

Fully Local + NKA similar to DSA

c

0.4

0.6

0.8

0.2

0.0

1.0

Is it just NKA?

Thick Diffusion Limit

$$\vec{x} \in [0,1] \times [0,1], \quad \sigma_t = \frac{1}{\epsilon}, \quad \sigma_s = \frac{1}{\epsilon} - \epsilon, \quad Q = \epsilon$$

Thick Diffusion Limit (cont.)

Fully Local doesn't maintain thick diffusion limit

Thick Diffusion Limit (cont.)

- Converge DSA with $\epsilon = 10^{-3}$
- ullet Use ψ to do one iteration of FLQD
- Compare scalar fluxes

FLQD still effective as a proxy in thick diffusion limit

Conclusions

- After the fact closure had suboptimal spatial accuracy not seen in 1D
- Numerical quadrature of rational polynomial terms led to second order algorithm
- Fully Local not effective for linear transport
 - Weak acceleration effects
 - Krylov just as effective
 - No thick diffusion limit
- Still viable for intended TRT use
 - \bullet At least second order accurate \Rightarrow accurate proxy for cell-local coupling

Future Work

- MMS
 - FLQD could be third order
 - Is discrete closure inconsistent with transport or with QD equations?
- Implement global and processor local QD
 - \bullet Couple elements by computing J_n^- and ϕ_n^- from Miften-Larsen of neighbor cell
- Extend to parallel
 - Communicate QD factors across parallel boundaries
- Compare Fully Local, processor-local, and global QD for accelerating PBJ
- Accuracy and expense of numerical quadrature for anisotropic problems
- TRT

References

- D. ANISTRATOV AND J. WARSA, Discontinuous finite element quasi-diffusion methods, Nuclear Science and Engineering, 191 (2018), pp. 105–120.
- [2] D. ANISTRATOV, J. WARSA, AND R. LOWRIE, Spatial domain decomposition for transport problems with two-level acceleration algorithms, (Submitted to M&C 2019).
- [3] V. GOL'DIN, A quasi-diffusion method of solving the kinetic equation, USSR Comp. Math. and Math. Physics, 4 (1964), pp. 136–149.
- [4] M. MIFTEN AND E. LARSEN, The quasi-diffusion method for solving transport problems in planar and spherical geometries, Journal of Transport Theory and Statistical Physics, 22(2-3) (1992), pp. 165–186.
- [5] S. OLIVIER, P. MAGINOT, AND T. HAUT, High order mixed finite element discretization for the variable eddington factor equations, (Submitted to M&C 2019).
- [6] S. OLIVIER AND J. MOREL, Variable eddington factor method for the sn equations with lumped discontinuous galerkin spatial discretization coupled to a drift-diffusion acceleration equation with mixed finite-element discretization, Journal of Computational and Theoretical Transport, 46 (2017), pp. 480–496.
- [7] J. WARSA AND D. ANISTRATOV, Two-level transport methods with independent discretization, Journal of Computational and Theoretical Transport, 47 (2018), pp. 424–450.

Questions?

This research is supported by the Department of Energy Computational Science Graduate Fellowship, provided under grant number DE-SC0019323 and was performed under the auspices of the U.S. Department of Energy by Los Alamos National Laboratory.

One Point Quadrature Equivalence

Volumetric term in 1D

1D
$$B_1(\xi) = 1 - \xi , B_2(\xi) = \xi$$

$$\int \frac{\mathrm{d}v}{\mathrm{d}x} E\phi \,\mathrm{d}x \to \int \frac{\mathrm{d}B_i}{\mathrm{d}x} EB_j \,\mathrm{d}x$$

After the fact closure

$$\frac{\int \frac{dB_i}{dx} \int \mu^2 \psi \, d\mu \, dx}{\int \int \psi \, d\mu \, dx} \int B_j \, dx = \frac{dB_i}{dx} \frac{\int \int \mu^2 \psi \, d\mu \, dx}{\int \int \psi \, d\mu \, dx} \int B_j \, dx$$
$$= \frac{1}{2} \frac{dB_i}{dx} \bar{E}$$
$$\bar{E} = \frac{P_1 + P_2}{\phi_1 + \phi_2}$$

• One-point GQ: $\xi = \frac{1}{2}$, w = 1

$$\int \frac{dB_i}{dx} EB_j dx = \frac{dB_i}{dx} \int EB_j dx$$
$$= w \frac{dB_i}{dx} [EB_j]_{\xi = \frac{1}{2}}$$
$$= \frac{1}{2} \frac{dB_i}{dx} \bar{E}$$

Boundary Terms and Low-Order Quadrature

 Discrete closure for $\oint G\,u\phi\,\mathrm{d}A$ in zeroth moment's Miften-Larsen BC term

$$\oint G\mathbf{B}^T\mathbf{B} \, \mathrm{d}V \to \frac{\oint \mathbf{B}^T\mathbf{B} \int |\hat{\Omega} \cdot \hat{n}| \, \underline{\psi} \, \mathrm{d}\Omega \, \mathrm{d}A}{\oint \mathbf{B} \int \psi \, \mathrm{d}\Omega \, \mathrm{d}A} \oint \mathbf{B} \, \mathrm{d}A$$

- Mass-matrix like term on numerator weights $|\hat{\Omega}\cdot\hat{n}|\,\psi$ non-uniformly to the nodes
- Denominator is simple average
- ullet Evaluating G at quadrature points will never weight the numerator towards the nodes differently than the denominator

The Real G

• Casting $\nabla \vec{v}: \mathbf{E}$ as a matrix-vector product requires flattening the tensors into vectors such that

$$\langle \nabla \vec{v} \rangle \cdot \langle \mathbf{E} \rangle = \nabla \vec{v} : \mathbf{E}$$

• Order the flattened vectors as

$$\langle \nabla \vec{v} \rangle = \begin{bmatrix} \frac{\partial v_x}{\partial x} & \frac{\partial v_x}{\partial y} & \frac{\partial v_y}{\partial x} & \frac{\partial v_y}{\partial y} \end{bmatrix}^T, \quad \langle \mathbf{E} \rangle = \begin{bmatrix} E_{xx} & E_{xy} & E_{yx} & E_{yy} \end{bmatrix}^T$$

Let,

$$\langle \nabla \vec{v} \rangle = \mathbf{d}\underline{v} \Rightarrow \mathbf{d} = \begin{bmatrix} \nabla B_1 & \nabla B_2 & \nabla B_3 \\ & & \nabla B_1 & \nabla B_2 & \nabla B_3 \end{bmatrix}$$

• Volumetric term is then:

$$\int \nabla \vec{v} : \mathbf{E} \, \phi \, dV \to \int \mathbf{d}^T \langle \mathbf{E} \rangle \mathbf{B} \, dV$$